$\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{IrC}(\mathrm{OH}) \mathrm{B}_{8} \mathrm{H}_{6}(\mathrm{OMe})$ which is the only other example of a ten-vertex isonido iridaborane species described in the primary literature (Crook, Greenwood, Kennedy \& McDonald 1981).

The asymmetric arrangement of the ligands with respect to the idealized mirror plane of symmetry of the IrB_{9} cluster [i.e. that through $\operatorname{Ir}(7) \mathrm{B}(1) \mathrm{B}(3) \mathrm{B}(7)$] does not seem to be reflected in significant differences in the iridium-boron distances, suggesting that the carbon atom produces most of the differences that have been observed between the corresponding interatomic distances in the iridacarbadecaborane. The larger angle of fold of the open face of the iridacarbadecaborane (as defined by the angle between the planes formed by the cluster vertices 8 , 9,10 and $7,8,10$), which is $22 \cdot 1(2)^{\circ}$ compared to $5 \cdot 4(5)^{\circ}$ in the title compound, is probably also mainly a result of the shorter distances between the cluster carbon atom and its attached atoms.

References

Boocock, S. K., Bould, J., Greenwood, N. N., Kennedy, J. D. \& McDonald, W. S. (1982). J. Chem. Soc. Dalton Trans. pp. 713-719.
Bould, J., Crook, J. E., Greenwood, N. N., Kennedy, J. D. \& Thornton-Pett, M. A. (1990). J. Chem. Soc. Dalton Trans. pp. 1441-1450.
Crook, J. E., Elrington, M., Greenwood, N. N., Kennedy, J. D., Thornton-Pett, M. A. \& Woolins, J.D. (1985). J. Chem. Soc. Dalton Trans. pp. 2407-2415.
Crook, J. E., Greenwood, N. N., Kennedy, J.D. \& McDonald, W. S. (1981). J. Chem. Soc. Chem. Commun. pp. 933-934.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kennedy, J. D. (1986). Prog. Inorg. Chem. 34, 211-434.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

trans-Tetrakis(3-tert-butyl-5-methylpyrazole)bis(tetrafluoroborato)cobalt(II), a Complex with Two Coordinated Tetrafluoroborate Anions

By James W. Egan and Klaus H. Theopold*
Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA

(Received 28 March 1989; accepted 11 September 1989)

Abstract

Co}\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}\right], M_{r}=785 \cdot 43\), monoclinic, $\quad C 2 / c, \quad a=27.511$ (11), $\quad b=11.729(5), \quad c=$ $15 \cdot 880(5) \AA, \beta=120 \cdot 46(2)^{\circ}, V=4417$ (3) $\AA^{3}, Z=$ $4, D_{x}=1.181 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $0.448 \mathrm{~mm}^{-1}, \quad F(000)=1652, T=295 \mathrm{~K}, \quad R=0.077$ for 3911 independent reflections. The complex is octahedral with two axially coordinated BF_{4}^{-}ligands and four equatorial pyrazole ligands. The coordination of the BF_{4}^{-}ligand results in the expected elongation of the B1-F1 bond compared with the average bond length of the non-coordinated F atoms.

Introduction. While the tetrafluoroborate anion has long been used as a non-coordinating anion, it has also been exploited as a labile ligand in a variety of transition-metal complexes (Beck \& Schloter, 1978; Brown, Nuttall, McAvoy \& Sharp, 1966; Legzdins \& Martin, 1983; Mattson \& Graham, 1981; Olgemöller, Bauer, Löbermann, Nagel \& Beck, 1982; Rheingold, Wu \& Heck, 1987). There have been a number of X-ray structure determinations in which a mono-

[^0]0108-2701/90/061013-03\$03.00
dentate BF_{4}^{-}anion has been variously described as a 'semi-coordinated' (Brown, Lee \& Melsom, 1967), 'weakly coordinated' (Gaughan, Dori \& Ibers, 1974), or 'normal' (Tomlinson, Bonamico, Dessy, Fares \& Scaramuzza, 1972) ligand, the differentiating criterion being the metal-fluorine bond distance. Here we report the structure of trans-tetrakis(3-tert-butyl-5methylpyrazole)bis(tetrafluoroborato)cobalt(II) (1). Analogous complexes of the type $\mathrm{Co}_{4}\left(\mathrm{BF}_{4}\right)_{2}$ (where $L=$ pyridine or γ-picoline) have been reported (Brown, Nuttall, McAvoy \& Sharp, 1966), but not characterized structurally.

Experimental. The reaction of potassium hy-dridotris(3-tert-butyl-5-methylpyrazolyl)borate with hexaaquacobalt(II) tetrafluoroborate in dry tetrahydrofuran results in the hydrolysis of the hydri-dotris(3-tert-butyl-5-methylpyrazolyl)borate ligand and the evolution of H_{2}. (1) was isolated from this reaction mixture as light pink solid in 20% yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 82.0 (br $s, 1 \mathrm{H}$), 11.9 (br $s, 9 \mathrm{H}$), -13.3 (br s, 3H) p.p.m. IR (Nujol): 3376 ($v s$), 1567 $(s), 1295(s), 1148(s), 1079(s), 1036(s), 940(s), 827$
© 1990 International Union of Crystallography
(s), $761(s), 720(s) \mathrm{cm}^{-1}$; m.p. $511-518 \mathrm{~K}$ (dec.). Analytical calculation (\%) for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{8} \mathrm{Co}$: C 48.93; H 7.20; N 14.25 . Found: C 49-18; H 7.45; N 14.49. Single crystals of (1) were grown from toluene/ ether solution at 243 K . A pink parallelepiped $(0.2 \times$ $0.4 \times 0.4 \mathrm{~mm}$) was mounted in a glass capillary. The unit-cell parameters were derived from a leastsquares fit of 24 reflections. Data were collected ($2 \theta-\theta$) using a Syntex $P 2_{1}$ diffractometer through the $h k l$ ranges 0 to 32,0 to 13 , and -18 to 16 respectively, with 4212 reflections measured, 3911 independent reflections processed ($R_{\text {int }}=2.57 \%$), 2227 reflections observed $[F>4 \cdot 0 \sigma(F)], \quad 2 \theta$ range $0 \cdot 0-50 \cdot 0^{\circ}$. Three standard reflections were measured every 50 reflections. The structure was solved using the Nicolet SHELXTL-PLUS system (Sheldrick, 1987) on a MicroVAXII. The Co atom was located from the Patterson map. Further difference Fourier syntheses located the remaining non- H atoms. The H atoms were placed in idealized positions prior to refinement (fixed isotropic U). Full-matrix leastsquares refinement minimized $\sum w\left(F_{o}-F_{c}\right)^{2}$. Refinement converged with $R=0.077$ and $w R=$ $0.090, \quad$ GOF $=2 \cdot 12, \quad(\Delta / \sigma)=3.002, \quad(\Delta \rho)_{\max }=$ $0.42 \mathrm{e} \AA^{-3}$. Scattering factors used were those in SHELXTL-PLUS.

Discussion. The crystal structure of (1) is shown in Fig. 1. Atomic positions are given in Table 1.* The Co atom sits on a crystallographic C_{2} axis which

Fig. 1. Molecular structure and labelling scheme for the non-H atoms in $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{BF}_{4}\right)_{2}\right]$ with 30% probability thermal ellipsoids. The twofold axis of rotation is indicated.

Table 1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$
U_{eq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
Co	0	2390 (1)	2500	58 (1)
N(1)	-444 (3)	3735 (5)	2727 (4)	67 (3)
N(2)	-678 (3)	4583 (5)	2053 (4)	70 (3)
C(1)	-563 (3)	4024 (8)	3428 (5)	76 (4)
C(2)	-849 (3)	5055 (7)	3186 (6)	82 (5)
C(3)	-928 (3)	5394 (6)	2294 (6)	73 (4)
C(4)	-382 (4)	3300 (8)	4302 (6)	102 (5)
C(5)	- 1212 (5)	6388 (8)	1674 (8)	96 (6)
C(6)	-1791 (8)	6329 (17)	1210 (15)	394 (28)
C(7)	- 1105 (8)	6601 (14)	915 (12)	327 (25)
C(8)	- 1057 (9)	7389 (11)	2234 (12)	383 (25)
N(3)	-505 (2)	1209 (5)	2694 (4)	63 (3)
N(4)	-1056 (2)	1459 (5)	2292 (4)	67 (3)
C(9)	-416 (3)	343 (6)	3311 (5)	60 (3)
C(10)	-913 (3)	80 (7)	3295 (5)	72 (5)
C(11)	- 1317 (3)	801 (6)	2633 (6)	71 (4)
C(12)	155 (3)	-187 (7)	3899 (5)	82 (4)
C(13)	- 1927 (4)	939 (9)	2302 (9)	109 (7)
C(14)	-2255 (6)	404 (15)	1437 (15)	499 (31)
C(15)	-2123 (5)	2049 (12)	2169 (14)	231 (16)
C(16)	-2047 (7)	368 (19)	2934 (15)	582 (41)
B(1)	-1155 (5)	2778 (10)	135 (7)	87 (6)
F(1)	-641 (2)	2385 (4)	945 (3)	86 (2)
F(2)	- 1282 (3)	2151 (5)	-648 (4)	155 (4)
F(3)	- 1062 (2)	3904 (5)	-5 (3)	124 (4)
F(4)	- 1542 (2)	2754 (5)	439 (4)	122 (3)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{N}(1) \quad 2$	2.136 (7)	$\mathrm{Co}-\mathrm{N}(3) \quad 2$.	$2 \cdot 093$ (7)
$\mathrm{Co}-\mathrm{F}(1) \quad 2$	$2 \cdot 190$ (3)	$\mathrm{N}(1)-\mathrm{N}(2) \quad 1 \cdot 3$	$1 \cdot 360$ (8)
$\mathrm{N}(1)-\mathrm{C}(1) \quad 1$	1.352 (13)	$\mathrm{N}(2)-\mathrm{C}(3) \quad 1$	1.339 (12)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$	1.387 (12)	$\mathrm{C}(1)-\mathrm{C}(4) \quad 1$.	1.482 (12)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$	$1 \cdot 378$ (14)	$\mathrm{C}(3)-\mathrm{C}(5) \quad 1$.	1.469 (12)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$	$1 \cdot 377$ (22)	$\mathrm{C}(5)-\mathrm{C}(7) \quad 1$.	1.401 (28)
$\mathrm{C}(5)-\mathrm{C}(8) \quad 1$	1.402 (18)	$\mathrm{N}(3)-\mathrm{N}(4) \quad 1.3$	$1 \cdot 344$ (9)
$\mathrm{N}(3)-\mathrm{C}(9) \quad 1$	1.346 (9)	$\mathrm{N}(4)-\mathrm{C}(11) \quad 1$	$1 \cdot 342$ (12)
$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$	1.389 (13)	$\mathrm{C}(9)-\mathrm{C}(12) \quad 1$.	1.494 (10)
$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$	1.368 (10)	$\mathrm{C}(11)-\mathrm{C}(13) \quad 1$.	$1 \cdot 492$ (14)
$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$	1.356 (22)	$\mathrm{C}(13)-\mathrm{C}(15) \quad 1 \cdot$	$1 \cdot 384$ (17)
$\mathrm{C}(13)-\mathrm{C}(16) \quad 1$	1.378 (30)	$\mathrm{B}(1)-\mathrm{F}(1)$	1.422 (10)
$\mathrm{B}(1)-\mathrm{F}(2) \quad 1$	1.330 (13)	B(1)-F(3) 1 -	$1 \cdot 385$ (13)
$\mathrm{B}(1)-\mathrm{F}(4) \quad 1$	1.373 (17)		
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	89.1 (3)	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{F}(1)$	89.4 (2)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{F}(1)$	87.1 (2)	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(1 A)$	84.7 (4)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(1 A)$	$173 \cdot 5$ (2)	$\mathrm{F}(1)-\mathrm{Co}-\mathrm{N}(1 A)$	90.8 (2)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(3 A)$	97.1 (4)	$\mathrm{F}(1)-\mathrm{Co}-\mathrm{N}(3 A)$	92.7 (2)
$\mathrm{F}(1)-\mathrm{Co}-\mathrm{F}(1 A)$	179.7 (2)	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{N}(2)$	119.3 (6)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$	$136 \cdot 2$ (5)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$104 \cdot 5$ (6)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	113.6 (7)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$109 \cdot 3$ (8)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	121.5 (8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	129.3 (10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.0 (9)	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$104 \cdot 6$ (7)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$123 \cdot 3$ (10)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	132.1 (10)
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	113.4 (12)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(7)$	116.5 (12)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	103.8 (14)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(8)$	110.6 (9)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$106 \cdot 2$ (16)	$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(8)$	$105 \cdot 5$ (14)
$\mathrm{Co}-\mathrm{N}(3)-\mathrm{N}(4)$	117.3 (4)	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(9)$	$135 \cdot 8$ (4)
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(9)$	104.9 (7)	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(11)$	112.8 (6)
$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$109 \cdot 8$ (6)	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(12)$	121.0 (8)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(12)$	129.2 (7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$106 \cdot 7$ (8)
$\mathrm{N}(4)-\mathrm{C}(11)-\mathrm{C}(10)$) $105 \cdot 8$ (8)	$\mathrm{N}(4)-\mathrm{C}(11)-\mathrm{C}(13)$	122.2 (7)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	132.1 (10)	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(14)$) 111.0 (13)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(15)$	5) 115.9 (10)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$) 105.9 (11)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(16)$	(6) 109.3 (10)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$) 103.4 (14)
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(16)$) 110.5 (17)	$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(2)$	109.5 (9)
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(3)$	$105 \cdot 9$ (8)	$F(2)-B(1)-F(3)$	$111 \cdot 1$ (9)
$F(1)-B(1)-F(4)$	$105 \cdot 6$ (8)	$F(2)-B(1)-F(4)$	115.8 (9)
$F(3)-B(1)-F(4)$	108.4 (10)	$\mathrm{Co}-\mathrm{F}(1)-\mathrm{B}(1)$	151.9 (6)

bisects the angles $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1 a$ and $\mathrm{N} 3-\mathrm{Co}-\mathrm{C} 3 a$. With the exception of $\mathrm{N} 1 a$ and $\mathrm{N} 3 a$, only the atoms on the crystallographically unique half of the molecule are labelled and will be used to describe the structure. (1) is an octahedral complex with two axially coordinated tetrafluoroborate ligands and four equatorial pyrazole ligands. Selected bond lengths and angles are given in Table 2. The $\mathrm{Co}-\mathrm{F}$ bond lengths of $2 \cdot 190$ (3) \AA in (1) are only slightly longer than the 2.05 (2) and 2.04 (1) \AA found in CoF_{2} (Stout \& Reed, 1954). The Co-F1-B1 bond angle of $151.9(6)^{\circ}$ falls within the wide range ($126-180^{\circ}$) observed for monodentate BF_{4}^{-}ligands. The coordination of the BF_{4}^{-}ligand results in the expected elongation of the $\mathrm{Bl}-\mathrm{F} 1$ bond to $1.422 \AA$ compared with the average bond length ($\mathrm{B}-\mathrm{F}_{\mathrm{ave}}=$ $1 \cdot 363 \AA$) of the non-coordinated F atoms. Bond angles within the BF_{4}^{-}ligand are unexceptional, ranging from $105 \cdot 6(8)$ to $115 \cdot 8(9)^{\circ}$. These data suggest that the tetrafluoroborate anions in (1) can be described as 'normal' (Tomlinson, Bonamico, Dessy, Fares \& Scaramuzza, 1972) BF_{4}^{-}ligands. An alternative description of the complex as a BF_{3} adduct of a cobalt fluoride (Burch, Calabrese \& Ittel, 1988) appears inappropriate in this case. The remaining bond lengths and angles about Co show only small deviations from an idealized octahedron. The planes of the pyrazole rings are twisted out of the equatorial plane of the octahedron to minimize steric interactions, but these ligands exhibit no unusual bond lengths or angles.
In conclusion, (1) provides another example of the ability of the tetrafluoroborate anion to act as a
ligand to transition metals. Concerning our original intent in carrying out the reaction leading to the formation of (1), we note that the facile hydrolysis of the tris(pyrazolyl)borate ligand in the presence of only small amounts of water may prove a troublesome feature of this increasingly popular class of tridentate ligands.

This research was supported by the National Science Foundation (CHE-8451670).

References

Beck, W. \& Schloter, K. (1978). Z. Naturforsch. Teil B, 33, 1214-1222.
Brown, D. H., Nuttall, R. H., McAvoy, J. \& Sharp, D. W. A. (1966). J. Chem. Soc. A, pp. 892-896.

Brown, D. S., Lee, J. D. \& Melsom, B. G. A. (1967). J. Chem. Soc. Chem. Commun. pp. 369-371.
Burch, R. R., Calabrese, J. C. \& Ittel, S. D. (1988). Organometallics, 7, 1642-1648.
Gaughan, A. P. Jr, Dori, Z. \& Ibers, J. A. (1974). Inorg. Chem. 13, 1657-1667.
Legzdins, P. \& Martin, D. T. (1983). Organometallics, 2, 1785-1791.

Mattson, B. M. \& Graham, W. A. G. (1981). Inorg. Chem. 20, 3186-3189.
Olgemöller, B., Bauer, H., Löbermann, H., Nagel, U. \& Beck, W. (1982). Chem. Ber. 115, 2271-2286.

Rheingold, A. L., Wu, G. \& Heck, R. F. (1987). Inorg. Chim. Acta, 131, 147-150.
Sheldrick, G. M. (1987). SHELXTL-PLUS Crystallographic System. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Stout, J. W. \& Reed, S. A. (1954). J. Am. Chem. Soc. 76, 5279-5281.
Tomlinson, A. A. G., Bonamico, M., Dessy, G., Fares, V. \& Scaramuzza, L. (1972). J. Chem. Soc. Dalton Trans. pp. 1671-1674.

Acta Cryst. (1990). C46, 1015-1017

Structure of Chlorodiphenyl[3-(p-tolylthio)propyl]tin

By Philip J. Cox*
School of Pharmacy, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB9 1FR, Scotland
Solange M. S. V. Domge-Harrison and Ian W. Nowell
School of Chemistry, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB1 1HG, Scotland
and R. Alan Howie, James L. Wardell and John McM Wigzell
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 10 May 1989; accepted 2 October 1989)

[^1]0108-2701/90/061015-03\$03.00
$10 \cdot 268(11), c=23 \cdot 201(12) \AA, V=2130 \cdot 5 \AA^{3}, Z=4$, $D_{x}=1.47 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu=$ $1.96 \mathrm{~mm}^{-1}, F(000)=952, T=293 \mathrm{~K}, R=0.0646$ for 2405 observed reflexions. The Sn atom is in a dis-

[^0]: * To whom correspondence should be addressed.

[^1]: Abstract. $\quad\left[\mathrm{Sn}(\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~S}\right)\right], \quad M_{r}=473 \cdot 6$, orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=8.943(11), \quad b=$

 * To whom correspondence should be addressed.

